453 research outputs found

    Galois coverings of weakly shod algebras

    Full text link
    We investigate the Galois coverings of weakly shod algebras. For a weakly shod algebra not quasi-tilted of canonical type, we establish a correspondence between its Galois coverings and the Galois coverings of its connecting component. As a consequence, we show that a weakly shod algebra is simply connected if and only if its first Hochschild cohomology group vanishes.Comment: Some references were added. The proof of Lemma 6.5 was modifie

    The first Hochschild cohomology group of a schurian cluster-tilted algebra

    Get PDF
    Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. We find several consequences when B is representation-finite, and also in the case where B is cluster-tilted of type Ã.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    Cycle-finite module categories

    Get PDF
    We describe the structure of module categories of finite dimensional algebras over an algebraically closed field for which the cycles of nonzero nonisomorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited

    New Polynomial-Based Molecular Descriptors with Low Degeneracy

    Get PDF
    In this paper, we introduce a novel graph polynomial called the ‘information polynomial’ of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power

    Balance of IL-10 and Interferon-γ plasma levels in human visceral leishmaniasis: Implications in the pathogenesis

    Get PDF
    BACKGROUND: Leishmaniasis remains a serious public health problem in several parts of the developing world. Effective prophylactic measurements are hampered by imprecise comprehension of different aspects of the disease, including its immunoregulation. A better comprehension of immunoregulation in human VL may be useful both for designing and evaluating immunoprophylaxis. METHODS: To explore immunoregulatory mechanisms, 20 visceral leishmaniasis (VL) patients were evaluated during active disease and at different periods up to one year after treatment determining their plasma cytokine levels, clinical parameters (palpable spleen and liver) and antibody levels. RESULTS: Elevated plasma levels of IFN-γ and of IL-12 p40 were observed during active disease, significantly decreasing after treatment whereas in vitro Leishmania antigen-stimulated IFN-γ production by PBMC exhibited an inverse pattern being low during disease and increasing steadily thereafter. Absence of IFN-γ activity is a hallmark of VL. The main candidate for blunting IFN-γ activity is IL-10, a cytokine highly elevated in plasma with sharp decrease after treatment. Activity of IL-10 is inferred by high levels of anti-Leishmania specific IgG1 and IgG3. TGF-β had elevated total, but not of active, levels lessening the likelihood of being the IFN-γ counterpart. Spleen or liver size presented a steady decrease but return to normal values at only 120 days after treatment. Anti-Leishmania IgG (total and subclasses) levels and DTH or Leishmania-stimulated lymphocyte proliferation conversion to positive also present a slow decrease after treatment. IL-6 plasma levels were elevated in only a few patients. CONCLUSION: Taken together our results suggest that IFN-γ and IL-10 are the molecules most likely involved in determining fate of disease. After treatment, there is a long delay before the immune profile returns to normal what precludes using plasma cytokine levels as criteria of cure as simpler clinical evaluations, as a palpable spleen or liver, can be used

    Endocytic and Recycling Endosomes Modulate Cell Shape Changes and Tissue Behaviour during Morphogenesis in Drosophila

    Get PDF
    During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis

    Clathrin and LRP-1-Independent Constitutive Endocytosis and Recycling of uPAR

    Get PDF
    Background: The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism couple

    Molecular profiling of cervical cancer progression

    Get PDF
    Most cancer patients die of metastatic or recurrent disease, hence the importance to identify target genes upregulated in these lesions. Although a variety of gene signatures associated with metastasis or poor prognosis have been identified in various cancer types, it remains a critical problem to identify key genes as candidate therapeutic targets in metastatic or recurrent cancer. The aim of our study was to identify genes consistently upregulated in both lymph node micrometastases and recurrent tumours compared to matched primary tumours in human cervical cancer. Taqman Low-Density Arrays were used to analyse matched tumour samples, obtained after laser-capture microdissection of tumour cell islands for the expression of 96 genes known to be involved in tumour progression. Immunohistochemistry was performed for a panel of up- and downregulated genes. In lymph node micrometastases, most genes were downregulated or showed expressions equal to the levels found in primary tumours. In more than 50% of lymph node micrometastases studied, eight genes (AKT, BCL2, CSFR1, EGFR1, FGF1, MMP3, MMP9 and TGF-β) were upregulated at least two-fold. Some of these genes (AKT and MMP3) are key regulators of epithelial–mesenchymal transition in cancer. In recurrent tumours, almost all genes were upregulated when compared to the expression profiles of the matched primary tumours, possibly reflecting their aggressive biological behaviour. The two genes showing a consistent downregulated expression in almost all lymph node metastases and recurrent tumours were BAX and APC. As treatment strategies are very limited for metastatic and recurrent cervical cancer, the upregulated genes identified in this study are potential targets for new molecular treatment strategies in metastatic or recurrent cervical cancer
    • …
    corecore